Random graph states, maximal flow and Fuss–Catalan distributions

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Line graphs associated to the maximal graph

Let $R$ be a commutative ring with identity. Let $G(R)$ denote the maximal graph associated to $R$, i.e., $G(R)$ is a graph with vertices as the elements of $R$, where two distinct vertices $a$ and $b$ are adjacent if and only if there is a maximal ideal of $R$ containing both. Let $Gamma(R)$ denote the restriction of $G(R)$ to non-unit elements of $R$. In this paper we study the various graphi...

متن کامل

Ordered Random Variables from Discontinuous Distributions

In the absolutely continuous case, order statistics, record values and several other models of ordered random variables can be viewed as special cases of generalized order statistics, which enables a unified treatment of their theory. This paper deals with discontinuous generalized order statistics, continuing on the recent work of Tran (2006). Specifically, we show that in general neither re...

متن کامل

Two-colorable graph states with maximal Schmidt measure

The Schmidt measure was introduced by Eisert and Briegel for quantifying the degree of entanglement of multipartite quantum systems [Phys. Rev. A 64, 022306 (2001)]. Although generally intractable, it turns out that there is a bound on the Schmidt measure for two-colorable graph states [Phys. Rev. A 69, 062311 (2004)]. For these states, the Schmidt measure is in fact directly related to the num...

متن کامل

Maximal Inequalities for Associated Random Variables

In a celebrated work by Shao [13] several inequalities for negatively associated random variables were proved. In this paper we obtain some maximal inequalities for associated random variables. Also we establish a maximal inequality for demimartingales which generalizes and improves the result of Christofides [4].

متن کامل

The Integrated Density of States of the Random Graph Laplacian

We analyse the density of states of the random graph Laplacian in the percolating regime. A symmetry argument and knowledge of the density of states in the nonpercolating regime allows us to isolate the density of states of the percolating cluster (DSPC) alone, thereby eliminating trivially localised states due to finite subgraphs. We derive a nonlinear integral equation for the integrated DSPC...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Physics A: Mathematical and Theoretical

سال: 2010

ISSN: 1751-8113,1751-8121

DOI: 10.1088/1751-8113/43/27/275303